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Abstract 

This research presents the kinematic modeling of a four mecanum wheel robot for 

environment mapping and navigation. The study developed the kinematic model of the robot 

and then used Bayesian and kalman filter to improve the Simultaneous Localization and 

Mapping (SLAM) of 2D LIDAR sensor used for scanning. Q learning algorithm was used as 

an agent in reinforcement learning to control the action of the robot with respect to the SLAM 

data input. The performance of the learning algorithm when trained with 5000 episodes of the 

environment, achieved loss function approximately zero which implied that the episodes was 

correctly learnt. When deployed on the robot and then tested in an environment with 

strategically places obstacles, the result showed that the robot was able to learn as it navigated 

from each episodes until it was able to correctly avoid obstacles in the path and carry out its 

desired function. 

Keywords: Kinematic, SLAM, LIDAR, Q learning, reinforcement learning, loss function  

1. INTRODUCTION 

The fundamental functions of the autonomous mobile robot are mapping, navigation, and 

localization. As the robot executes its desired tasks under command, it needs to do so at a rapid 

speed, collect dynamic environment information, including its current position, and make a 

decision to safely avoid static and dynamic obstacles to reach the goal within the prescribed time. 

Interaction with the environment such as grabbing, pushing, lifting and manipulating objects are 

the important capabilities of robotic systems as it avoids collisions and navigate in the workspace 

to reach goal location. The kinematic coordination, dynamic interaction and coupling of the 

different units must be considered in other to control robot’s functionalities, mobility, and 

manipulation. [1] Stated three common types of mobile robots; (i) vehicles fitted with wheels 

similar to general vehicles (automobile); (ii) two parallel wheels with one caster wheel and (iii) 

omnidirectional wheels. 
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In this work, an omnidirectional four-wheel robot was modeled and was later used for obtaining 

the graphical representation of an indoor environment. An omnidirectional mobile robot is a kind 

of holonomic robot that has the ability to move in translational and rotational simultaneously and 

independently [2]. According to [2], holonomic or mecanum wheel platform has the ability to 

simultaneously and independently achieve rotational and translational motion capabilities. An 

omnidirectional robot is a robot that can travel along the ground plane (x, y) in any direction 

without considering the actual orientation of the robot around its vertical axis. The ability of the 

wheels to move in more than just one direction determines the level of maneuverability of a 

mobile robot with Swedish mecanum or spherical wheels. Most robotic platforms will have an 

omnidirectional and high level of maneuverability attributes.  

The forward and Inverse kinematic for omnidirectional mecanum wheels in relation to its 

platform was developed in [3]. The experimental analytical results showed that 8 different 

motions are possible without changing the robot’s orientation. It was stated in [4] that most 

omnidirectional wheels are very sensitive to the road conditions which limits their operational 

performances. Furthermore, it was explained that each wheel attached to a mobile robot has 

omnidirectional characteristics on a plane surface [4].The angle rollers of the mecanum wheel 

transform a portion of the force in the rotational direction of the wheel into a force common to 

the direction of the wheel, as shown in figure 1. Depending on each individual wheel direction 

and speed, the resulting combination of all these forces creates a maximum force vector in any 

desired direction, allowing the platform to move freely in the direction of the resulting force 

vector, without altering the wheels themselves. 

 

Figure 1: Robot motion according to the direction and angular speed of the wheels. 

The desired directional movement is achieved by the combination of different wheels rotation 

and speeds. For all applications of mobile robots, the necessary things needed to be done are 

mathematical modeling, path planning, fluctuation elimination, the use of appropriate 

mechanisms and the use of appropriate control algorithms [5]. Analysis of robot stability and 

fluctuation elimination through the addition of passive rollers on the wheels and Moment Height 
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Stability (MHS) measurement was presented [6, 7]. [8] Also presented the design of a circular 

four-wheeled omnidirectional mobile Robot with the speed control implementation that was 

based on a PID control algorithm. In related research, a singularity free dynamic operation space 

dynamic modeling approach based on Lagrange’s form of the D’ Alembert principle was 

presented in [9]. It could be seen from the literature that Omnidirectional robot with mecanum 

wheels surfer limitations such as slippage and lateral movement. These limitations impede their 

ability to achieve proper control for navigation purposes 

1.1 Problem statement  

Limited reasoning and the representational ability for unstructured environmental models in 

robot navigation impede a completely reactive approach which causes a path to the goal position 

not always guaranteed. Hence, path planning is a challenging operation due to uncertainty like 

dynamic environment. Base on the factor stated above, deep reinforcement learning was 

proposed in this paper to make the learning agent learn the best policy to accumulate the most 

positive reward over time. This will allow the robot to learn how to find and follow the best path 

from the starting location to the target location without prior environmental knowledge. 

2. METHODOLOGY 

There are basically two mathematical models of the robot that was formulated; the kinematic 

model and dynamic model of holonomic robot structure but here we will be dealing only on the 

kinematic model. The kinematic model of a robot describes the motion of the robot mechanical 

structure (fixed and movable units in the robot) without considering the mass of each of the units 

or the forces that caused the motion of the units. While the dynamic model describes the state of 

the robotic system variables as the operation evolves with time. Also, robot dynamics explains 

the relationship between the forces acting on a robotic structure with respect to the acceleration 

produced by the structure. However, it has been a challenge in understanding the kinematics and 

the dynamics of a holonomic four-wheel mobile robot platform due to the complex wheel-

ground interaction and the kinematic constraints imposed on the platform by the four mecanum 

wheels. The robot platform in this work is an omnidirectional mobile platform that provides 3 

degrees of freedom (DoF) in 2D space. The robot used 2D LIDAR scanner to Simultaneously 

Localize and Map (SLAM) the environment, then reinforcement learning was used to control the 

behavior based on deep Q-learning algorithm. This was implemented using high programming 

language and the performance evaluated.   

2.1 Four-Wheel Mobile Robot Kinematics 

The wheel mobile robot kinematics is of three types [10]; Internal kinematics, External 

kinematic, and forward and inverse kinematics. The internal kinematic defines the relationships 

between external variables of the systems, such as the rotation of the wheel and robot movement. 

External kinematics defines the robot's position and orientation with respect to some coordinate 

frame of reference. Forward and reverse kinematics or direct kinematics solves the robot's state 
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depending on its inputs. The inputs can be wheel speeds, movement of joints, steering of wheels, 

etc. A four-wheel mobile robot's steering is based on controlling the robot's four left and right 

differential wheel relative velocities [11]. 

The input to drive a mobile robot is the speed of the right and left wheels and the robot's 

orientation.  The pose of a robot plane in an initial frame or global coordinate frame (𝑋𝐺 , 𝑌𝐺) can 

be represented in figure 2.  

 

Figure 2: Kinematics model of Four-wheel Mobile Robot in Global Coordinate Frame  

The forward kinematic model of the four-wheel robot was done to determine the robots’ location 

and orientation through the wheels’ rotation measurement obtained from the optical encoder. The 

kinematic modeling was simplified by treating the differential four-wheel drive of the robot as a 

two virtual wheel as shown in figure 2. A differential drive means the robot can change direction 

by varying the relative rate of rotation of each wheel without the need for additional steering 

motion.  

The forward kinematic model parameters of a four-wheel robot are; 

𝑋𝐶  - robot geometric centre 𝑋 position 

𝑌𝐶  - robot geometric centre 𝑌 position 

𝑋𝑟 - robot local 𝑋 axis that determines the front of the robot 

𝜑 - robot angular position 

𝑅𝐶   - robot geometric center 

𝑊𝐹𝑅  - front right wheel 

𝑊𝑅𝐿  - rear left wheel 

𝑊𝑅𝑅  - rear right wheel 

𝑊𝐹𝐿  - front left wheel 

𝑊𝑉𝑅  - virtual right wheel 

𝑊𝑉𝐿   - virtual left wheel 

𝑙1 - distance between the robot center and front/rear wheels 

𝑙2  - distance between robot left and right wheels 
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The following assumptions were made while developing the forward kinematic model; 

1. The robot's mass centre is at the robot frame's geometric centre. 

2. The two wheels rotate at the same speed on each side of the robot so that the four-wheel 

robot can be viewed as a differential two-wheel drive robot. 

3. The wheels of the robot make firm contact with the horizontal ground surface and can 

only move in 𝑥 and 𝑦 plane. 

4. There is no tire deformation. 

The control vector of the robot that describes the robot’s center of gravity (𝐶𝑜𝐺) in terms of the 

global coordinate frame can be expressed as;  

𝑞(𝑡) = [

𝑥(𝑡)
𝑦(𝑡)
𝜑(𝑡)

]                                                                                                                                 (1) 

Where 

𝑥(𝑡) – is the 𝑥- axis position of the robot within the global coordinate frame 

𝑦(𝑡) – is the 𝑦- axis position of the robot within the global coordinate frame 

𝜑(𝑡) – is the orientation or heading of the robot w.r.t the 𝑥- axis global coordinate frame 

The left and right wheels have radius𝑟, and they are separated by a distance 𝑙1 from each other. 

Their angular positions are described by 𝜃𝑅  and 𝜃𝐿 .The 𝜑 is the robot orientation angle measure 

from the 𝑋𝐺 − 𝑎𝑥𝑖𝑠 of the global frame to 𝑋𝑅 − 𝑎𝑥𝑖𝑠 of the local frame of the robot. Therefore, 

the vector representation of the robot angular position w.r.t the global frame is; 

𝑞(𝑡) = [𝑥 𝑦 𝜃𝑅𝜃𝐿]𝑇                                                                                                                         (2) 

The vector of generalized velocities is 

�̇� = (�̇�, �̇�, �̇�)
𝑇

                                                                                                                                  (3) 

The linear velocity of the robot moving in a plane can be expressed in terms of a moving robot or 

moving frame as  

𝑣 ≜ [𝑣𝑥 , 𝑣𝑦 , 𝜔𝑖]
𝑇

 ϵ ℝ3                                                                                                                      (4) 

Where 𝑣𝑥 and 𝑣𝑦  are the longitudinal and lateral velocity of the mobile robot [12]. 

Following the initial frame coordinates (𝑋𝐺 , 𝑌𝐺), the orientation 𝜃 , combined with the robot 

velocities in both the local frame and initial frame as given in equation 3.1 and equation 3.4, the 

kinematic equation of motion using the rotation matrix approach is written as; 

�̇� [
�̇�
�̇�
�̇�

] = [
cos 𝜃 𝑠𝑖𝑛 𝜃 0

− sin 𝜃 cos 𝜃 0
0 0 1

] [

𝑣𝑥

𝑣𝑦

𝜔𝑖

]                                                                                                        (5) 
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where �̇� ϵ ℝ3 is the generalized velocity vector and 𝜔𝑖 is the four wheels angular velocity of the 

robot, thus, 𝑖 = 1, 2, 3, 4.  

Let the linear speeds of the right virtual wheel (𝑣𝑅) and the left virtual wheel (𝑣𝐿)  be the control 

parameters for the robot motion operation. The new position (𝑋𝑅, 𝑌𝑅, 𝜑) of the robot after some 

time ∆𝑡 is obtained by solving for the angular speed 𝜔 of the mobile robot center of gravity 

(CoG) and the angular position 𝜑  of each virtual wheel as the average of its corresponding 

wheels as follow; 

𝜔𝑊𝐿 =
𝜑𝑊𝐹𝐿 + 𝜑𝑊𝑅𝐿

2
                                                                                                       (6) 

𝜔𝑊𝑅 =
𝜑𝑊𝐹𝑅 + 𝜑𝑊𝑅𝑅

2
                                                                                                      (7) 

𝜑𝑊𝑉𝐿 =
𝜑𝑊𝐹𝐿 + 𝜑𝑊𝑅𝐿

2
                                                                                                      (8) 

𝜑𝑊𝑉𝑅 =
𝜑𝑊𝐹𝑅 + 𝜑𝑊𝑅𝑅

2
                                                                                                     (9) 

For the assumed virtual wheels, the linear speeds for each of the wheels are; 

𝑣𝑅 = 𝜔𝑊𝑅 × 𝑟                                                                                                                           (10) 

𝑣𝐿 = 𝜔𝑊𝐿 × 𝑟                                                                                                                            (11) 

Where 𝑟 is the radius of the wheel. 

The robot’s angular position and speed are written as; 

𝜑 = (𝜔𝑊𝑅 − 𝜔𝑊𝐿)
𝑟

𝑙2
                                                                                                              (12) 

The robot speed for 𝑥 and 𝑦 components are;  

�̇�𝑐 = (𝑣𝐿 + �̇�
𝑙2

2
) cos 𝜑                                                                                                           (13) 

�̇�𝑐 = (𝑣𝐿 + �̇�
𝑙2

2
) sin 𝜑                                                                                                           (14) 

The position of the mobile robot is obtained by integrating the 𝑥 and 𝑦 components of the robot’s 

speed as; 

𝑥𝑐 = ∫ �̇�𝑐

𝑡

0

𝑑𝑡                                                                                                                              (15) 

𝑦𝑐 = ∫ �̇�𝑐

𝑡

0

𝑑𝑡                                                                                                                              (16) 

2.2  Simultaneous Localization and Mapping (SLAM) 

SLAM is a computational approach of constructing and updating the map of an unknown 

environment while keeping track of the robot position (pose) inside the map as it moves around 
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and explores the environment through a collection of information using the onboard sensors. The 

map used for localization in this study was generated by the SLAM method. The idea was to 

enable the robot identify everything along its propagation path (Environment) map out its 

environment and at the same time. This was achieved used a 2D LIDAR and odometer sensors 

respectively. The LIDAR scan for the environment while the odometer was used to map the 

detected images. Bayesian filter was used to process the data captured while kalman filter [18] 

was used to update the output. The workflow of the SLAM process was presented in the figure 3, 

while the Bayesian algorithm was presented in algorithm 1;  

Start Robot

Check if Robot is 

still in motion

Stop Robot 

Movement

Stop

No

Yes

Initialise the   D LIDAR and 

Odometer Sensors

Run the ROS SLAM Algorithm in 

nodes (Python Scripts): 

Align2D.py, Data Loader.py, 

Visualizers etc. 

Log measured Laser and 

Odometer map data

Filter the recorded map data with 

Kalman Filter and Bayes Filter 

Algprithms

Read the dataset from file 

and Display Map of the 

environment with RViz 

Store the 

obtained 

dataset in the 

rosbag

Enter Robot Control Commands 

from the control pad 

Save the generated Map

Figure 3: Flow Chart for SLAM Operation 
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Algorithm 1:    Recursive Bayes Filter 

1:   function BAYES_FILTER (𝑏𝑒𝑙(𝑥𝑡−1), 𝑑, 𝑧𝑡 , 𝑢𝑡, ); 

2:   𝜂 = 0 

3:   if 𝑑 is a perceptual data item 𝑧𝑡 then 

4:            for all𝑥𝑡do 

5:                     𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡|𝑢) = ∫ 𝑝(𝑥𝑡| 𝑢𝑡, 𝑥𝑡−1) 𝑏𝑒𝑙(𝑥𝑡−1) 𝑑𝑥𝑡−1; 

6:                     𝜂 = 𝜂 + 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡|𝑢) 

7:            for all 𝑥𝑡do 

8:                     𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡|𝑢) = 𝜂−1𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡|𝑢) 

9:    else if 𝑑 is an action data item 𝑢 then 

10:           for all 𝑥𝑡do 

11:   𝑏𝑒𝑙(𝑥𝑡|𝑢) = ∑ 𝑝(𝑧𝑡|𝑥𝑡) 𝑏𝑒𝑙(𝑥𝑡); 

12:  end for 

13:   return 𝑏𝑒𝑙(𝑥𝑡) 

14:   end function 

 

3. REINFORCEMENT LEARNING ALGORITHM 

Having developed the robotic system model in figure 2 and the SLAM model in figure 3, the 

control system which used the information mapped to take decision was achieved with 

Reinforcement Learning (RL). RL is a semi-supervised learning model in machine learning that 

enables an agent to learn by interacting with its environment, using feedback from its own 

actions and experiences to maximize its total rewards. The major components of a RL agent are 

[20]; 

i) A Policy 

ii) A Value Function 

iii) A discount factor𝛾 

iv) A Model 

Policy (𝜋) is the agent’s best action by experience (behavior) based on how it is reinforced to 

learn by acting in the environment. The policy establishes the states (𝑠 𝜖 𝑆) of the environment 

into actions(𝑎 𝜖 𝐴), and it is improved in an RL problem on every step the agent moves in the 

environment state. At the end of the total actions performed for a given task, the cumulative sum 

of the immediate rewards (𝑟) receive is returned (𝐺) and used to optimize the policy. The effect 

of action (𝑎) in a given state (𝑠) is known as the reward 𝑟(𝑠, 𝑎) and the long-term reward from a 

state (𝑎) after taken series of actions following a policy (𝜋) is denoted by 𝐺(𝑠, 𝑎). A value 

function expresses how good it to be in a particular state is, and how good is it to take a 

particular action. Value function tells the agent much reward to expect if it chooses a particular 

action in a particular state. It’s a prediction of expected future rewards used to evaluate the 
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outcome of states, therefore enabling the agent to select between different actions. The discount 

factor (𝛾) informs the agent of how much it should care about rewards at the moment in order to 

reward properly in the future. As 𝛾 tends to zero (0), that means the agent cares about the first 

reward. While 𝛾 moves towards one (1), that means the agent cares about all future rewards. A 

model is the agent’s representation of its environment, i.e. how the agent sees the environment. 

A model predicts what the environment will do next.  

3.1 Q-Learning algorithm 

Q-Learning algorithm is defined as an off-policy and a model-free RL algorithm that 

progressively processes the transition samples [19]. Q-learning seeks to discover the best action 

to perform in a given state thereby learning a policy that produces a maximum total reward. It is 

an off-policy because the Q-learning function does not depend on action within the current 

policy, thus Q-learning takes random action. In this section, model-free RL using a Q-learning 

algorithm is applied to mobile robot navigation where the robot is assumed to act in a stochastic 

environment. The mobile robot was made to sequentially select actions from a sequence of time 

steps so as to maximize its collective reward. The robot navigation was model as MDP where a 

state-space 𝑆 , an action space 𝒜 , and a transition dynamic distribution 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) that 

satisfies the Markov property 𝑃(𝑠𝑡+1|𝑠1, 𝑎1, … , 𝑠𝑡, 𝑎𝑡) = 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)  for all trajectory 

𝑠1, 𝑎1, 𝑠2, 𝑎2 … , 𝑠𝑡 , 𝑎𝑡 within the state-action space, and a reward function 𝑟: 𝒮 × 𝒜 ⟼ ℝ were 

considered. Trajectory of states, actions and rewards 𝑠1, 𝑎1, 𝑠2, 𝑎2 … , 𝑠𝑡 , 𝑎𝑡, were produced by a 

stochastic policy 𝜋(𝑠𝑡, 𝑎𝑡) = 𝑃(𝑎𝑡|𝑠𝑡) over 𝒮 × 𝒜 × ℝ. 

The Q-value is given as, 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) +  𝛾 
𝑚𝑎𝑥

𝑎
 𝑄(𝑠𝑡

′, 𝑎𝑡)                                                               (17) 

Where    

𝑄(𝑠𝑡 , 𝑎𝑡) is the learned action value (Q-value). 

𝛾 is the discount factor that is used to balance immediate reward and future reward. 

The above equation states that the Q-value generated by existing in the state 𝑠𝑡 and taking an 

action 𝑎𝑡 is the sum of the immediate reward 𝑟(𝑠𝑡 , 𝑎𝑡)and the highest Q-value possible from the 

next state 𝑠′. Gamma 𝛾, the discount factor which regulates the influence of immediate or future 

rewards. The discount factor can be set between 0 and 1. Setting it to a value of less than 0 

applies the algorithm to take future rewards which make it converge faster.  

Again, 𝑄(𝑠𝑡
′ , 𝑎𝑡) depends on 𝑄(𝑠𝑡

′′ , 𝑎𝑡) which has a coefficient of gamma squared𝛾2 . So, the 

current Q-value comes from the Q-values of future states as shown in equation 18; 

𝑄(𝑠𝑡, 𝑎𝑡) → 𝛾𝑄(𝑠𝑡
′, 𝑎𝑡) + 𝛾2𝑄(𝑠𝑡

′, 𝑎𝑡) … … … 𝛾n𝑄(𝑠𝑡
′′, 𝑎𝑡)                                  (18) 
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Altering the value of gamma will reduce or increase the influence of future rewards. Since this is 

a recursive equation, arbitrary assumptions for all q-values were made so that it will converge to 

the optimal policy. Practically, this is realized as a Q-learning update strategy defined as, 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾
𝑚𝑎𝑥

𝑎
 𝑄(𝑠𝑡+1, 𝑎𝑡) − 𝑄(𝑠𝑡, 𝑎𝑡)]                      (19) 

Where 𝛼 is the learningstep rate taken to update the estimation of 𝑄(𝑠𝑡, 𝑎𝑡). The learning rate or 

step size is set between 0 and 1 to simply specify the degree to which the newly acquired 

information supersedes old information. Setting it to 0 will make the 𝑄  not to update and 

learning cannot be achieved. While if the learning set is set to value towards 1, such as 0.9 means 

that learning will be done faster. The discount factor also can be set between 0 and 1, but setting 

it to a value of less than 0 makes the algorithm to converge faster. The table 1 presented the 

reward function for the Q learning and the Q-learning algorithm for the Q-value update rule is 

shown in the figure 4; 

 Stop

No

Yes

Initialise Episode = 0, Increment 

Episode = +1

Move to the next state according 

to maximum learning value 

Start

Is Target Reached?

No

Yes

Initialise the Q-values arbitrarily 

Take action and Receive Positive 

Reward or Negative Reward  for 

the chosen action 

Choose new action (a) from new 

state (a) using Epsilon-greedy 

policy from Q-table

Calculate the Q-value with MDP 

and update the reward in the Q-

table

Update Q-table with

New Q-value and 

Reward received  

Is Episode Maximum?

Initialise State (s)

 

Figure 4: Model of the Q learning 
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Table 1: Reward Function Lookup table 

State Transition Criteria Reward Function Value (𝒓) 

Other State → Target State  1 

Safe State → Cosy State  -0.2 

Cosy State → Safe State  0.8 

Risky State → Cosy State  0.6 

Cosy State → Risky State  -1 

Risky State → Risky State 

(moving too closer to 

Obstacle) 

𝑑𝑜𝑏𝑠 ≤ 𝑑𝑚𝑖𝑚
𝑡 ≤ 𝑑𝑚𝑖𝑚

𝑡−1 − 2 -0.2 

𝑑𝑚𝑖𝑚
𝑡 = 𝑑𝑚𝑖𝑚

𝑡−1 − 1 ≤ 𝑑𝑜𝑏𝑠 -0.2 

𝑑𝑚𝑖𝑚
𝑡 = 𝑑𝑚𝑖𝑚

𝑡−1 − 2 ≤ 𝑑𝑜𝑏𝑠 -0.5 

𝑑𝑚𝑖𝑚
𝑡 = 𝑑𝑚𝑖𝑚

𝑡−1 − 3 -1 

Non-Safe State →  Non-Safe 

State 

(Avoiding Obstacle) 

𝑑𝑜𝑏𝑠 ≤ 𝑑𝑚𝑖𝑚
𝑡  0.7 

𝑑𝑚𝑖𝑚
𝑡 ≥ 𝑑𝑜𝑏𝑠  0.5 

 

4. SIMULATION AND RESULTS 

The algorithms developed were implemented on the robot using Simulink and the performance 

evaluated. The SLAM model was used to configure the 2D LIDAR sensor for the data 

acquisition while the Q learning was used to take decision and control the kinematics of the robot 

in an environment. The environment used has a dimension of 200 × 200 (𝑚2) and the obstacles 

were randomly placed in the environment. The robot was not given prior knowledge of its 

environment. The robot is indicated as a blue rectangular box located at (180, 20) in the map, 

and the target is placed at(180, 40). The aim is to navigate the robot starting from the initial robot 

position to the target position at a fixed speed of 3.12 𝑚 𝑠⁄ . This navigation was done by finding 

the optimal path from the initial point to the target position that is collision-free. 

The self-learning process containing 500 moving steps per episode was conducted for 600 

learning episodes. In every episode, there is a different configuration of random obstacle 

positions, and the robot tries to take as many steps as it can, learning every step from the 

received rewards. The training phase stops when all the learning episodes have finished. The 

parameter values used for the navigation simulation are as below; 

 Learning Rate = 0.7 

 Discount Factor = 0.81,  

 Exploration Constant =0.9. 
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The robot was trained in three different environments to expose it to new challenges that would 

cause the robot to avoid being trapped into an endless loop after learning the environment. The 

result of the learning process was presented in the figure 5; 

 

Figure 5: The performance of the Q learning process 

From the result in figure 5, it was observed that the Q learning was able to learn the environment 

correctly as the loss function recorded was approximately zero which implied good training 

process. The performance result of the SLAM was presented in figure 6; 

 

Figure 6: Indoor Map Visualization using SLAM 
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The figure 6 presented the result of the SLAM used for the mapping of the environment and 

localization to detect free path for navigation. The result showed that the Bayesian filter 

algorithm was able to allow the scanner to map and read clearly in 2D the environment. The data 

collected from the SLAM process was used by the reinforcement learning control system for 

specific action to guide the navigation of the robot from obstacles as shown in the figure 7.  

 

(a)                                                               (b) 

 

(c)                                                                        (d)  

Figure 7: Performances of the robot with the learning algorithm at various episodes  

The figure 7 presented the performance of the robot as it navigated and learn from various 

episodes as in (a, b, c and d) respectively. The first step performed by the robot during navigation 

was to identify its current state and whether the current state is a safe state or not. If the state is 

not safe, the robot adopts a control policy; else, it changes its direction towards the goal and 

makes a step toward the target. Before using a control policy from the Q-table 1, the robot 

generates all state-action Q-value pairs ever possible so that it can greedily select the action with 
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the highest Q-value. It then find its next state from the selected action and continues this process 

of action to select and move until it either reaches its target point or collides with an obstacle or 

hits the boundary wall.  

5. CONCLUSION 

This paper presents the mobile robot with improved SLAM performance using Bayesian and 

kalman filter. The robot was developed with reinforcement learning trained with Q learning 

algorithm as the agent. The performance when tested showed that the robot was able to learn as it 

navigates based on the Q learning model and give rewards based on the table 1 and update till it 

completely understood the environment and performed its task successfully. 
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